ABSTRACT
Auditory-pigmentary disorders result from the absence of melanocytes in the cochlea,
skin, hair, and eyes. Waardenburg syndrome (WS) is one such autosomal dominant disorder
that is characterized by congenital sensorineural hearing loss and pigmentation anomalies
of neural crest-derived tissues. The clinical features of WS, including hearing loss,
are not fully penetrant and interfamilial and intrafamilial variation in the phenotype
is a common observation. A wide variety of unique mutations in at least six genes
contribute to the phenotype in WS patients; however, the type and location of mutations
have not been strongly correlated with the different clinical features that are expressed.
Bilateral, congenital deafness is the most serious clinical feature expressed in the
common types of WS and has been successfully habilitated through hearing aids or cochlear
implants.
KEYWORDS
Waardenburg syndrome - hereditary deafness - pigmentation anomalies - dystopia canthorum
-
PAX3
REFERENCES
1
Waardenburg P J.
A new syndrome combining developmental anomalies of the eyelids, eyebrows and nose
root with pigmentary defects of the iris and head hair and with congenital deafness.
Am J Hum Genet.
1951;
3
195-253
2
Arias S.
Genetic heterogeneity in the Waardenburg syndrome.
Birth Defects Orig Artic Ser.
1971;
07
87-101
3
Arias S, Mota M.
Apparent non-penetrance for dystopia in Waardenburg syndrome type I, with some hints
on the diagnosis of dystopia canthorum.
J Genet Hum.
1978;
26
103-131
4
Farrer L A, Arnos K S, Asher Jr J H et al..
Locus heterogeneity for Waardenburg syndrome is predictive of clinical subtypes.
Am J Hum Genet.
1994;
55
728-737
5
Hageman M J, Delleman J W.
Heterogeneity in Waardenburg syndrome.
Am J Hum Genet.
1977;
29
468-485
6
Farrer L A, Grundfast K M, Amos J et al..
Waardenburg syndrome (WS) type I is caused by defects at multiple loci, one of which
is near ALPP on chromosome 2: first report of the WS consortium.
Am J Hum Genet.
1992;
50
902-913
7
Liu X Z, Newton V E, Read A P.
Waardenburg syndrome type II: phenotypic findings and diagnostic criteria.
Am J Med Genet.
1995;
55
95-100
8
Goodman R M, Lewithal I, Solomon A, Klein D.
Upper limb involvement in the Klein-Waardenburg syndrome.
Am J Med Genet.
1982;
11
425-433
9
Shah K N, Dalal S J, Desai M P, Sheth P N, Joshi N C, Ambani L M.
White forelock, pigmentary disorder of irides, and long segment Hirschsprung disease:
possible variant of Waardenburg syndrome.
J Pediatr.
1981;
99
432-435
10 Fraser G R. The Causes of Profound Deafness in Childhood: a Study of 3,535 Individuals
with Severe Hearing Loss Present at Birth or of Childhood Onset. Baltimore, MD; The
Johns Hopkins University Press 1976
11
Partington M W.
Waardenburg's syndrome and heterochromia iridum in a deaf school population.
Can Med Assoc J.
1964;
90
1008-1017
12
Sellars S, Beighton P.
The Waardenburg syndrome in deaf children in southern Africa.
S Afr Med J.
1983;
63
725-728
13
Newton V.
Hearing loss and Waardenburg's syndrome: implications for genetic counselling.
J Laryngol Otol.
1990;
104
97-103
14
Fisch L.
Deafness as part of an hereditary syndrome.
J Laryngol Otol.
1959;
73
355-382
15
Hageman M J.
Audiometric findings in 34 patients with Waardenburg's syndrome.
J Laryngol Otol.
1977;
91
575-584
16
Oysu C, Baserer N, Tinaz M.
Audiometric manifestations of Waardenburg's syndrome.
Ear Nose Throat J.
2000;
79
704-709
17
Liu X Z, Newton V E.
Distortion product emissions in normal-hearing and low-frequency hearing loss carriers
of genes for Waardenburg's syndrome.
Ann Otol Rhinol Laryngol.
1997;
106
220-225
18 Lonsbury-Martin B L, Martin G K, Whitehead M L.
Distortion-product otoacoustic emissions in the normal hearing population . In: Robinette MS, Glattke TJ Otoacoustic Emissions: Clinical Applications. New York,
NY; Thieme 1997: 83-109
19
Reynolds J E, Meyer J M, Landa B et al..
Analysis of variability of clinical manifestations in Waardenburg syndrome.
Am J Med Genet.
1995;
57
540-547
20
Oysu C, Oysu A, Aslan I, Tinaz M.
Temporal bone imaging findings in Waardenburg's syndrome.
Int J Pediatr Otorhinolaryngol.
2001;
58
215-221
21
Migirov L, Henkin Y, Hildesheimer M, Muchnik C, Kronenberg J.
Cochlear implantation in Waardenburg's syndrome.
Acta Otolaryngol.
2005;
125
713-717
22
Daneshi A, Hassanzadeh S, Farhadi M.
Cochlear implantation in children with Waardenburg syndrome.
J Laryngol Otol.
2005;
119
719-723
23
Foy C, Newton V, Wellesley D, Harris R, Read A P.
Assignment of the locus for Waardenburg syndrome type I to human chromosome 2q37 and
possible homology to the Splotch mouse.
Am J Hum Genet.
1990;
46
1017-1023
24
Asher Jr J H, Morell R, Friedman T B.
Waardenburg syndrome (WS): the analysis of a single family with a WS1 mutation showing
linkage to RFLP markers on human chromosome 2q.
Am J Hum Genet.
1991;
48
43-52
25
Ishikiriyama S, Tonoki H, Shibuya Y et al..
Waardenburg syndrome type I in a child with de novo inversion (2)(q35q37.3).
Am J Med Genet.
1989;
33
505-507
26
Asher Jr J H, Friedman T B.
Mouse and hamster mutants as models for Waardenburg syndromes in humans.
J Med Genet.
1990;
27
618-626
27
Epstein D J, Vekemans M, Gros P.
Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a
deletion within the paired homeodomain of Pax-3.
Cell.
1991;
67
767-774
28
Tassabehji M, Read A P, Newton V E et al..
Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3
paired box gene.
Nature.
1992;
355
635-636
29
Baldwin C T, Hoth C F, Amos J A, da-Silva E O, Milunsky A.
An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome.
Nature.
1992;
355
637-638
30
Morell R, Friedman T B, Moeljopawiro S, Hartono, Soewito, Asher Jr J H.
A frameshift mutation in the HuP2 paired domain of the probable human homolog of murine
Pax-3 is responsible for Waardenburg syndrome type 1 in an Indonesian family.
Hum Mol Genet.
1992;
1
243-247
31
Tassabehji M, Newton V E, Liu X Z et al..
The mutational spectrum in Waardenburg syndrome.
Hum Mol Genet.
1995;
4
2131-2137
32
Hoth C F, Milunsky A, Lipsky N, Sheffer R, Clarren S K, Baldwin C T.
Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome
(WS-III) as well as Waardenburg syndrome type I (WS-I).
Am J Hum Genet.
1993;
52
455-462
33
Zlotogora J, Lerer I, Bar-David S, Ergaz Z, Abeliovich D.
Homozygosity for Waardenburg syndrome.
Am J Hum Genet.
1995;
56
1173-1178
34
Asher Jr J H, Sommer A, Morell R, Friedman T B.
Missense mutation in the paired domain of PAX3 causes craniofacial-deafness-hand syndrome.
Hum Mutat.
1996;
7
30-35
35
Tassabehji M, Newton V E, Read A P.
Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF)
gene.
Nat Genet.
1994;
8
251-255
36
Hodgkinson C A, Moore K J, Nakayama A et al..
Mutations at the mouse microphthalmia locus are associated with defects in a gene
encoding a novel basic-helix-loop-helix-zipper protein.
Cell.
1993;
74
395-404
37
Hughes A E, Newton V E, Liu X Z, Read A P.
A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia
gene at chromosome 3p12-p14.1
Nat Genet.
1994;
7
509-512
38
Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia A et al..
Zinc-finger transcription factor Slug contributes to the function of the stem cell
factor c-kit signaling pathway.
Blood.
2002;
100
1274-1286
39
Sanchez-Martin M, Rodriguez-Garcia A, Perez-Losada J, Sagrera A, Read A P, Sanchez-Garcia I.
SLUG (SNAI2) deletions in patients with Waardenburg disease.
Hum Mol Genet.
2002;
11
3231-3236
40
Hosoda K, Hammer R E, Richardson J A et al..
Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce
megacolon associated with spotted coat color in mice.
Cell.
1994;
79
1267-1276
41
Baynash A G, Hosoda K, Giaid A et al..
Interaction of endothelin-3 with endothelin-B receptor is essential for development
of epidermal melanocytes and enteric neurons.
Cell.
1994;
79
1277-1285
42
Southard-Smith E M, Kos L, Pavan W J.
Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model.
Nat Genet.
1998;
18
60-64
43
Puffenberger E G, Hosoda K, Washington S S et al..
A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's
disease.
Cell.
1994;
79
1257-1266
44
Attie T, Till M, Pelet A et al..
Mutation of the endothelin-receptor B gene in Waardenburg-Hirschsprung disease.
Hum Mol Genet.
1995;
4
2407-2409
45
Edery P, Attie T, Amiel J et al..
Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg
syndrome).
Nat Genet.
1996;
12
442-444
46
Hofstra R M, Osinga J, Tan-Sindhunata G et al..
A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg
type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome).
Nat Genet.
1996;
12
445-447
47
Pingault V, Bondurand N, Kuhlbrodt K et al..
SOX10 mutations in patients with Waardenburg-Hirschsprung disease.
Nat Genet.
1998;
18
171-173
48
Pingault V, Bondurand N, Lemort N et al..
A heterozygous endothelin 3 mutation in Waardenburg-Hirschsprung disease: is there
a dosage effect of EDN3/EDNRB gene mutations on neurocristopathy phenotypes?.
J Med Genet.
2001;
38
205-209
49
Tachibana M, Kobayashi Y, Matsushima Y.
Mouse models for four types of Waardenburg syndrome.
Pigment Cell Res.
2003;
16
448-454
50
Hibino H, Horio Y, Inanobe A et al..
An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear
stria vascularis of inner ear: its specific subcellular localization and correlation
with the formation of endocochlear potential.
J Neurosci.
1997;
17
4711-4721
51
Yasumoto K, Yokoyama K, Shibata K, Tomita Y, Shibahara S.
Microphthalmia-associated transcription factor as a regulator for melanocyte-specific
transcription of the human tyrosinase gene.
Mol Cell Biol.
1994;
14
8058-8070
52
Watanabe A, Takeda K, Ploplis B, Tachibana M.
Epistatic relationship between Waardenburg syndrome genes MITF and PAX3.
Nat Genet.
1998;
18
283-286
53
Bondurand N, Pingault V, Goerich D E et al..
Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome.
Hum Mol Genet.
2000;
9
1907-1917
54
Goulding M D, Chalepakis G, Deutsch U, Erselius J R, Gruss P.
Pax-3, a novel murine DNA binding protein expressed during early neurogenesis.
EMBO J.
1991;
10
1135-1147
55
Barber T D, Barber M C, Tomescu O, Barr F G, Ruben S, Friedman T B.
Identification of target genes regulated by PAX3 and PAX3-FKHR in embryogenesis and
alveolar rhabdomyosarcoma.
Genomics.
2002;
79
278-284
56
Pandya A, Xia X J, Landa B L et al..
Phenotypic variation in Waardenburg syndrome: mutational heterogeneity, modifier genes
or polygenic background?.
Hum Mol Genet.
1996;
5
497-502
57
Morell R, Spritz R A, Ho L et al..
Apparent digenic inheritance of Waardenburg syndrome type 2 (WS2) and autosomal recessive
ocular albinism (AROA).
Hum Mol Genet.
1997;
6
659-664
58
Baldwin C T, Hoth C F, Macina R A, Milunsky A.
Mutations in PAX3 that cause Waardenburg syndrome type I: ten new mutations and review
of the literature.
Am J Med Genet.
1995;
58
115-122
59
Morell R, Friedman T B, Asher Jr J H, Robbins L G.
The incidence of deafness is non-randomly distributed among families segregating for
Waardenburg syndrome type 1 (WS1).
J Med Genet.
1997;
34
447-452
60
DeStefano A L, Cupples L A, Arnos K S et al..
Correlation between Waardenburg syndrome phenotype and genotype in a population of
individuals with identified PAX3 mutations.
Hum Genet.
1998;
102
499-506
61
Asher Jr J H, Harrison R W, Morell R, Carey M L, Friedman T B.
Effects of Pax3 modifier genes on craniofacial morphology, pigmentation, and viability:
a murine model of Waardenburg syndrome variation.
Genomics.
1996;
34
285-298
62
Schultz J M, Yang Y, Caride A J et al..
Modification of human hearing loss by plasma-membrane calcium pump PMCA2.
N Engl J Med.
2005;
352
1557-1564
63
Riazuddin S, Castelein C M, Ahmed Z M et al..
Dominant modifier DFNM1 suppresses recessive deafness DFNB26.
Nat Genet.
2000;
26
431-434
64
Noben-Trauth K, Zheng Q Y, Johnson K R.
Association of cadherin 23 with polygenic inheritance and genetic modification of
sensorineural hearing loss.
Nat Genet.
2003;
35
21-23
65
Ikeda A, Zheng Q Y, Zuberi A R, Johnson K R, Naggert J K, Nishina P M.
Microtubule-associated protein 1A is a modifier of tubby hearing (moth1).
Nat Genet.
2002;
30
401-405
66
Ng L, Rusch A, Amma L L et al..
Suppression of the deafness and thyroid dysfunction in Thrb-null mice by an independent
mutation in the Thra thyroid hormone receptor alpha gene.
Hum Mol Genet.
2001;
10
2701-2708
67
Kveton J, Balkany T J.
Status of cochlear implantation in children. American Academy of Otolaryngology-Head
and Neck Surgery Subcommittee on Cochlear implants.
J Pediatr.
1991;
118
1-7
68
Loundon N, Rouillon I, Munier N, Marlin S, Roger G, Garabedian E N.
Cochlear implantation in children with internal ear malformations.
Otol Neurotol.
2005;
26
668-673
69
Mylanus E A, Rotteveel L J, Leeuw R L.
Congenital malformation of the inner ear and pediatric cochlear implantation.
Otol Neurotol.
2004;
25
308-317
70
Buchman C A, Copeland B J, Yu K K, Brown C J, Carrasco V N, Pillsbury III H C.
Cochlear implantation in children with congenital inner ear malformations.
Laryngoscope.
2004;
114
309-316
Dr. Julie M Schultz
NIDCD/NIH, 5 Research Court
Room 2A-19, Rockville, MD 20850
Email: borkj@nidcd.nih.gov